If it's not what You are looking for type in the equation solver your own equation and let us solve it.
41x-0.15x^2=1200
We move all terms to the left:
41x-0.15x^2-(1200)=0
a = -0.15; b = 41; c = -1200;
Δ = b2-4ac
Δ = 412-4·(-0.15)·(-1200)
Δ = 961
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$\sqrt{\Delta}=\sqrt{961}=31$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(41)-31}{2*-0.15}=\frac{-72}{-0.3} =+240 $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(41)+31}{2*-0.15}=\frac{-10}{-0.3} =33+0.1/0.3 $
| 4(x-3)+3(x+2)=22 | | 41x+0.15x^2=1200 | | 3-3(b-2)=2-7b | | (5)=x^2-21x | | 41x+0.15x=1200 | | -4/d=-2 | | 448-336k+35k^2=0 | | -9(-11x-2)+1=12(x-12)+337 | | 4-h=6 | | 35k^2-336k+448=0 | | 4a=a+10/2 | | 2r+4-(-2)=6 | | 2/3x-11+11-2/3x=0 | | 2m+18-(-3)=7 | | 16=5x-3(-3x+18) | | (5r-1)/2=5 | | -1/2-5q=5 | | 3+5x+2x=19-(1-x) | | 4d-68+(-12)=-16 | | x+(x/10)=190 | | 280+14x=2(20x+22)+2(13x-12) | | 9x-25=4x-10 | | 2u^2-8=0 | | -6x+7(-2x+6)=-138 | | 9.6/(7.8+x^-4.5)=4.45 | | 4=6x+22-4x | | 450=1.05x-x | | x−8π=π | | 5-x3=-15 | | 9.6/(7.8+x^-4.5)=0 | | -3(-8x-5)-12=-2(x+7)-4 | | 19=25–3s |